Balancing Performance and Human Autonomy With Implicit Guidance Agent

Author:

Nakahashi Ryo,Yamada Seiji

Abstract

The human-agent team, which is a problem in which humans and autonomous agents collaborate to achieve one task, is typical in human-AI collaboration. For effective collaboration, humans want to have an effective plan, but in realistic situations, they might have difficulty calculating the best plan due to cognitive limitations. In this case, guidance from an agent that has many computational resources may be useful. However, if an agent guides the human behavior explicitly, the human may feel that they have lost autonomy and are being controlled by the agent. We therefore investigated implicit guidance offered by means of an agent’s behavior. With this type of guidance, the agent acts in a way that makes it easy for the human to find an effective plan for a collaborative task, and the human can then improve the plan. Since the human improves their plan voluntarily, he or she maintains autonomy. We modeled a collaborative agent with implicit guidance by integrating the Bayesian Theory of Mind into existing collaborative-planning algorithms and demonstrated through a behavioral experiment that implicit guidance is effective for enabling humans to maintain a balance between improving their plans and retaining autonomy.

Publisher

Frontiers Media SA

Reference50 articles.

1. Apprenticeship learning via inverse reinforcement learning;Abbeel,2004

2. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing;Baker;Nat. Hum. Behav.,2017

3. Action understanding as inverse planning;Baker;Cognition,2009

4. Implicit coordination strategies for effective team communication;Butchibabu;Hum. Factors,2016

5. On the utility of learning about humans for human-ai coordination;Carroll;Adv. Neural Inf. Process. Syst.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3