One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift

Author:

Hinder Fabian,Vaquet Valerie,Hammer Barbara

Abstract

The world surrounding us is subject to constant change. These changes, frequently described as concept drift, influence many industrial and technical processes. As they can lead to malfunctions and other anomalous behavior, which may be safety-critical in many scenarios, detecting and analyzing concept drift is crucial. In this study, we provide a literature review focusing on concept drift in unsupervised data streams. While many surveys focus on supervised data streams, so far, there is no work reviewing the unsupervised setting. However, this setting is of particular relevance for monitoring and anomaly detection which are directly applicable to many tasks and challenges in engineering. This survey provides a taxonomy of existing work on unsupervised drift detection. In addition to providing a comprehensive literature review, it offers precise mathematical definitions of the considered problems and contains standardized experiments on parametric artificial datasets allowing for a direct comparison of different detection strategies. Thus, the suitability of different schemes can be analyzed systematically, and guidelines for their usage in real-world scenarios can be provided.

Funder

European Research Council

Publisher

Frontiers Media SA

Reference79 articles.

1. A survey of methods for time series change point detection;Aminikhanghahi;Knowl. Inform. Syst,2017

2. A Kernel multiple change-point algorithm via model selection;Arlot;J. Machine Learn. Res,2019

3. “Early drift detection method,”;Baena-Garcıa,2006

4. “Learning from time-changing data with adaptive windowing,”;Bifet,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3