Solution of the Fokker–Planck Equation by Cross Approximation Method in the Tensor Train Format

Author:

Chertkov Andrei,Oseledets Ivan

Abstract

We propose the novel numerical scheme for solution of the multidimensional Fokker–Planck equation, which is based on the Chebyshev interpolation and the spectral differentiation techniques as well as low rank tensor approximations, namely, the tensor train decomposition and the multidimensional cross approximation method, which in combination makes it possible to drastically reduce the number of degrees of freedom required to maintain accuracy as dimensionality increases. We demonstrate the effectiveness of the proposed approach on a number of multidimensional problems, including Ornstein-Uhlenbeck process and the dumbbell model. The developed computationally efficient solver can be used in a wide range of practically significant problems, including density estimation in machine learning applications.

Publisher

Frontiers Media SA

Reference28 articles.

1. Neural Ordinary Differential Equations;Chen;Adv. Neural Inf. Process. Syst.,2018

2. Tensor Networks for Dimensionality Reduction and Large-Scale Optimization: Part 1 Low-Rank Tensor Decompositions;Cichocki;FNT Machine Learn.,2016

3. Parallel Cross Interpolation for High-Precision Calculation of High-Dimensional Integrals;Dolgov;Comp. Phys. Commun.,2020

4. A Tensor Decomposition Algorithm for Large Odes with Conservation Laws;Dolgov;Comput. Methods Appl. Math.,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Black Box Approximation in the Tensor Train Format Initialized by ANOVA Decomposition;SIAM Journal on Scientific Computing;2023-08-11

2. Low-rank tensor methods for partial differential equations;Acta Numerica;2023-05

3. Sketching for a low-rank nonnegative matrix approximation: Numerical study;Russian Journal of Numerical Analysis and Mathematical Modelling;2023-03-01

4. Learning Feynman Diagrams with Tensor Trains;Physical Review X;2022-11-16

5. Fast global spectral methods for three-dimensional partial differential equations;IMA Journal of Numerical Analysis;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3