Research on the structure function recognition of PLOS

Author:

Liu Jiangfeng,Zhao Zhixiao,Wu Na,Wang Xiyu

Abstract

PurposeThe present study explores and investigates the efficiency of deep learning models in identifying discourse structure and functional features and explores the potential application of natural language processing (NLP) techniques in text mining, information measurement, and scientific communication.MethodThe PLOS literature series has been utilized to obtain full-text data, and four deep learning models, including BERT, RoBERTa, SciBERT, and SsciBERT, have been employed for structure-function recognition.ResultThe experimental findings reveal that the SciBERT model performs outstandingly, surpassing the other models, with an F1 score. Additionally, the performance of different paragraph structures has been analyzed, and it has been found that the model performs well in paragraphs such as method and result.ConclusionThe study's outcomes suggest that deep learning models can recognize the structure and functional elements at the discourse level, particularly for scientific literature, where the SciBERT model performs remarkably. Moreover, the NLP techniques have extensive prospects in various fields, including text mining, information measurement, and scientific communication. By automatically parsing and identifying structural and functional information in text, the efficiency of literature management and retrieval can be improved, thereby expediting scientific research progress. Therefore, deep learning and NLP technologies hold significant value in scientific research.

Publisher

Frontiers Media SA

Reference15 articles.

1. Automatically classifying sentences in full-text biomedical articles into introduction, methods, results and discussion;Agarwal;Bioinformatics,2009

2. BeltagyI. LoK. CohanA. SciBERT: A pretrained language model for scientific text2019

3. DevlinJ. ChangM. W. LeeK. ToutanovaK. Bert: Pre-training of deep bidirectional transformers for language understanding2018

4. Text-level structure of research papers: Implications for text-based information processing systems;Kando;Proc. Ann. BCS-IRSG Colloquium IR Res.,1997

5. Rhetorical structure of biochemistry research articles;Kanoksilapatham;Eng. Specific Purp.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3