Unsupervised learning and natural language processing highlight research trends in a superbug

Author:

Méndez-Cruz Carlos-Francisco,Rodríguez-Herrera Joel,Varela-Vega Alfredo,Mateo-Estrada Valeria,Castillo-Ramírez Santiago

Abstract

IntroductionAntibiotic-resistant Acinetobacter baumannii is a very important nosocomial pathogen worldwide. Thousands of studies have been conducted about this pathogen. However, there has not been any attempt to use all this information to highlight the research trends concerning this pathogen.MethodsHere we use unsupervised learning and natural language processing (NLP), two areas of Artificial Intelligence, to analyse the most extensive database of articles created (5,500+ articles, from 851 different journals, published over 3 decades).ResultsK-means clustering found 113 theme clusters and these were defined with representative terms automatically obtained with topic modelling, summarising different research areas. The biggest clusters, all with over 100 articles, are biased toward multidrug resistance, carbapenem resistance, clinical treatment, and nosocomial infections. However, we also found that some research areas, such as ecology and non-human infections, have received very little attention. This approach allowed us to study research themes over time unveiling those of recent interest, such as the use of Cefiderocol (a recently approved antibiotic) against A. baumannii.DiscussionIn a broader context, our results show that unsupervised learning, NLP and topic modelling can be used to describe and analyse the research themes for important infectious diseases. This strategy should be very useful to analyse other ESKAPE pathogens or any other pathogens relevant to Public Health.

Publisher

Frontiers Media SA

Reference64 articles.

1. On the surprising behavior of distance metrics in high dimensional spaces;Aggarwal,2001

2. A survey of text clustering algorithms;Aggarwal,2012

3. Analysis of colony phase variation switch in acinetobacter baumannii clinical isolates;Ahmad;PLoS One,2019

4. Using topic modeling methods for short-text data: a comparative analysis;Albalawi;Front. Artif. Intell.,2020

5. Revisiting K-means and topic modeling, a comparison study to cluster Arabic documents;Alhawarat;IEEE Access,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3