XGSleeve: detecting sleeve incidents in well completion by using XGBoost classifier

Author:

Somi Sahand,Jubair Sheikh,Cooper David,Wang Peng

Abstract

The sliding sleeve holds a pivotal role in regulating fluid flow during hydraulic fracturing within shale oil extraction processes. However, concerns persist surrounding its reliability due to repeated attempts at opening the sleeve, resulting in process inefficiencies. While downhole cameras can verify sleeve states, their high cost poses a limitation. This study proposes an alternative approach, leveraging downhole data analysis for sleeve incident detection in lieu of cameras. This study introduces “XGSleeve,” a novel machine-learning methodology. XGSleeve amalgamates hidden Markov model-based clustering with the XGBoost model, offering robust identification of sleeve incidents. This method serves as an operator-centric tool, addressing the domains of oil and gas, well completion, sliding sleeves, time series classification, signal processing, XGBoost, and hidden Markov models. The XGSleeve model exhibits a commendable 86% precision in detecting sleeve incidents. This outcome significantly curtails the need for multiple sleeve open-close attempts, thereby enhancing operational efficiency and safety. The successful implementation of the XGSleeve model rectifies existing limitations in sleeve incident detection, consequently fostering optimization, safety, and resilience within the oil and gas sector. This innovation further underscores the potential for data-driven decision-making in the industry. The XGSleeve model represents a groundbreaking advancement in sleeve incident detection, demonstrating the potential for broader integration of AI and machine learning in oil and gas operations. As technology advances, such methodologies are poised to optimize processes, minimize environmental impact, and promote sustainable practices. Ultimately, the adoption of XGSleeve contributes to the enduring growth and responsible management of global oil and gas resources.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference25 articles.

1. CEC Fact Sheet2022

2. “Image classification of time series based on deep convolutional neural network,”;Cao,2021

3. “High density CCL memory tool to confirm SSD sleeve position,”;Daniels,2001

4. ECG classification using deep CNN and Gramian angular field;Elmir;arXiv preprint arXiv:2308.02395,2023

5. Options to Cap and Cut Oil and Gas Sector Greenhouse Gas Emissions to Achieve 2030 Goals and Net-Zero by 20502023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3