Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques

Author:

Morapedi Tshepang Duncan,Obagbuwa Ibidun Christiana

Abstract

BackgroundAir pollution contributes to the most severe environmental and health problems due to industrial emissions and atmosphere contamination, produced by climate and traffic factors, fossil fuel combustion, and industrial characteristics. Because this is a global issue, several nations have established control of air pollution stations in various cities to monitor pollutants like Nitrogen Dioxide (NO2), Ozone (O3), Sulfur Dioxide (SO2), Carbon Monoxide (CO), Particulate Matter (PM2.5, PM10), to notify inhabitants when pollution levels surpass the quality threshold. With the rise in air pollution, it is necessary to construct models to capture data on air pollutant concentrations. Compared to other parts of the world, Africa has a scarcity of reliable air quality sensors for monitoring and predicting Particulate Matter (PM2.5). This demonstrates the possibility of extending research in air pollution control.MethodsMachine learning techniques were utilized in this study to identify air pollution in terms of time, cost, and efficiency so that different scenarios and systems may select the optimal way for their needs. To assess and forecast the behavior of Particulate Matter (PM2.5), this study presented a Machine Learning approach that includes Cat Boost Regressor, Extreme Gradient Boosting Regressor, Random Forest Classifier, Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Decision Tree.ResultsCat Boost Regressor and Extreme Gradient Boosting Regressor were implemented to predict the latest PM2.5 concentrations for South African Cities with recording stations using past dated recordings, then the best performing model between the two is used to predict PM2.5 concentrations for South African Cities with no recording stations and also to predict future PM2.5 concentrations for South African Cities. K-Nearest Neighbor, Logistic Regression, Support Vector Machine, Decision Tree, and Random Forest Classifier were implemented to create a system predicting the Air Quality Index (AQI) Status.ConclusionThis study investigated various machine learning techniques for air pollution to analyze and predict air pollution behavior regarding air quality and air pollutants, detecting which areas are most affected in South African cities.

Funder

National Research Foundation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference26 articles.

1. Air quality prediction through regression model;Aarthi;Int. J. Sci. Technol. Res.,2020

2. Detection and prediction of air pollution using machine learning models;Aditya;Int. J. Engin. Trends Technol. (IJETT),2018

3. Prediction and analysis of pollutants using supervised machine learning;Akiladevi;Int. J. Recent Technol. Engin.,2020

4. Comparative analysis of machine learning techniques for predicting air quality in smart cities;Ameer;IEEE Access,2019

5. Air pollution monitoring and prediction using IoT and machine learning;Balasubramanian;Int. J. Comp. Sci. Technol.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3