Share buybacks: a theoretical exploration of genetic algorithms and mathematical optionality

Author:

Osterrieder Joerg

Abstract

This article exclusively formulates and presents three innovative hypotheses related to the execution of share buybacks, employing Genetic Algorithms (GAs) and mathematical optimization techniques. Drawing on the foundational contributions of scholars such as Osterrieder, Seigne, Masters, and Guéant, we articulate hypotheses that aim to bring a fresh perspective to share buyback strategies. The first hypothesis examines the potential of GAs to mimic trading schedules, the second posits the optimization of buyback execution as a mathematical problem, and the third underlines the role of optionality in improving performance. These hypotheses do not only offer theoretical insights but also set the stage for empirical examination and practical application, contributing to broader financial innovation. The article does not contain new data or extensive reviews but focuses purely on presenting these original, untested hypotheses, sparking intrigue for future research and exploration.JEL ClassificationG00.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Cooperation in Science and Technology

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference16 articles.

1. Optimal execution with nonlinear impact functions and trading-enhanced risk;Almgren;Appl. Mathematic. Financ.,2003

2. Optimal execution of accelerated share repurchase contracts with fixed notional;Guéant;J. Risk,2017

3. Accelerated share repurchase: pricing and execution strategy;Guéant;Int. J. Theor. Appl. Financ.,2015

4. Accelerated share repurchase and other buyback programs: what neural networks can bring;Guéant;Q. Financ.,2020

5. MastersB. If Companies are Go ing to Buy Back Shares, They Should Pay a Fair Price. Financial Times2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3