A robust approach for endotracheal tube localization in chest radiographs

Author:

Hsu Chung-Chian,Ameri Rasoul,Lin Chih-Wen,He Jia-Shiang,Biyari Meghdad,Yarahmadi Atefeh,Band Shahab S.,Lin Tin-Kwang,Fan Wen-Lin

Abstract

Precise detection and localization of the Endotracheal tube (ETT) is essential for patients receiving chest radiographs. A robust deep learning model based on U-Net++ architecture is presented for accurate segmentation and localization of the ETT. Different types of loss functions related to distribution and region-based loss functions are evaluated in this paper. Then, various integrations of distribution and region-based loss functions (compound loss function) have been applied to obtain the best intersection over union (IOU) for ETT segmentation. The main purpose of the presented study is to maximize IOU for ETT segmentation, and also minimize the error range that needs to be considered during calculation of distance between the real and predicted ETT by obtaining the best integration of the distribution and region loss functions (compound loss function) for training the U-Net++ model. We analyzed the performance of our model using chest radiograph from the Dalin Tzu Chi Hospital in Taiwan. The results of applying the integration of distribution-based and region-based loss functions on the Dalin Tzu Chi Hospital dataset show enhanced segmentation performance compared to other single loss functions. Moreover, according to the obtained results, the combination of Matthews Correlation Coefficient (MCC) and Tversky loss functions, which is a hybrid loss function, has shown the best performance on ETT segmentation based on its ground truth with an IOU value of 0.8683.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3