Abstract
We derive blending coefficients for the optimal blend of multiple independent prediction models with normal (Gaussian) distribution as well as the variance of the final blend. We also provide lower and upper bound estimation for the final variance and we compare these results with machine learning with counts, where only binary information (feature says yes or no only) is used for every feature and the majority of features agreeing together make the decision.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献