CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin

Author:

Zotov Evgeny,Kadirkamanathan Visakan

Abstract

Digitalisation of manufacturing is a crucial component of the Industry 4.0 transformation. The digital twin is an important tool for enabling real-time digital access to precise information about physical systems and for supporting process optimisation via the translation of the associated big data into actionable insights. Although a variety of frameworks and conceptual models addressing the requirements and advantages of digital twins has been suggested in the academic literature, their implementation has received less attention. The work presented in this paper aims to make a proposition that considers the novel challenges introduced for data analysis in the presence of heterogeneous and dynamic cyber-physical systems in Industry 4.0. The proposed approach defines a digital twin simulation tool that captures the dynamics of a machining vibration signal from a source model and adapts them to a given target environment. This constitutes a flexible approach to knowledge extraction from the existing manufacturing simulation models, as information from both physics-based and data-driven solutions can be elicited this way. Therefore, an opportunity to reuse the costly established systems is made available to the manufacturing businesses, and the paper presents a process optimisation framework for such use case. The proposed approach is implemented as a domain adaptation algorithm based on the generative adversarial network model. The novel CycleStyleGAN architecture extends the CycleGAN model with a style-based signal encoding. The implemented model is validated in an experimental scenario that aims to replicate a real-world manufacturing knowledge transfer problem. The experiment shows that the transferred information enables the reduction of the required target domain data by one order of magnitude.

Funder

Engineering and Physical Sciences Research Council

Publisher

Frontiers Media SA

Reference70 articles.

1. Modelling and Simulation of Micro-milling Cutting Forces;Afazov;J. Mater. Process. Tech.,2010

2. GAN-SRAF: Sub-resolution Assist Feature Generation Using Conditional Generative Adversarial Networks;Alawieh;Proc. - Des. Automation Conf.,2019

3. Virtual Process Systems for Part Machining Operations;Altintas;CIRP Ann.,2014

4. Chatter Stability of Metal Cutting and Grinding;Altintas;CIRP Ann.,2004

5. Architecture to Geometry - Integrating System Models with Mechanical Design;Bajaj;AIAA Space and Astronautics Forum and Exposition, SPACE,20162016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3