Population-Based Screening for Endometrial Cancer: Human vs. Machine Intelligence

Author:

Hart Gregory R.,Yan Vanessa,Huang Gloria S.,Liang Ying,Nartowt Bradley J.,Muhammad Wazir,Deng Jun

Abstract

Incidence and mortality rates of endometrial cancer are increasing, leading to increased interest in endometrial cancer risk prediction and stratification to help in screening and prevention. Previous risk models have had moderate success with the area under the curve (AUC) ranging from 0.68 to 0.77. Here we demonstrate a population-based machine learning model for endometrial cancer screening that achieves a testing AUC of 0.96.We train seven machine learning algorithms based solely on personal health data, without any genomic, imaging, biomarkers, or invasive procedures. The data come from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). We further compare our machine learning model with 15 gynecologic oncologists and primary care physicians in the stratification of endometrial cancer risk for 100 women.We find a random forest model that achieves a testing AUC of 0.96 and a neural network model that achieves a testing AUC of 0.91. We test both models in risk stratification against 15 practicing physicians. Our random forest model is 2.5 times better at identifying above-average risk women with a 2-fold reduction in the false positive rate. Our neural network model is 2 times better at identifying above-average risk women with a 3-fold reduction in the false positive rate.Our machine learning models provide a non-invasive and cost-effective way to identify high-risk sub-populations who may benefit from early screening of endometrial cancer, prior to disease onset. Through statistical biopsy of personal health data, we have identified a new and effective approach for early cancer detection and prevention for individual patients.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

Frontiers Media SA

Reference25 articles.

1. Cancer facts and figures 20172017

2. Diabetes and endometrial cancer in the Iowa women’s health study;Anderson;Cancer Epidemiol. Biomarkers Prev.,2001

3. Global burden of cancer attributable to high body-mass index in 2012: a population-based study;Arnold;Lancet Oncol.,2015

4. Hypertension and the risk of endometrial cancer: a systematic review and meta-analysis of case-control and cohort studies;Aune;Sci. Rep.,2017

5. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies;Aune;Ann. Oncol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3