A topological model for partial equivariance in deep learning and data analysis

Author:

Ferrari Lucia,Frosini Patrizio,Quercioli Nicola,Tombari Francesca

Abstract

In this article, we propose a topological model to encode partial equivariance in neural networks. To this end, we introduce a class of operators, called P-GENEOs, that change data expressed by measurements, respecting the action of certain sets of transformations, in a non-expansive way. If the set of transformations acting is a group, we obtain the so-called GENEOs. We then study the spaces of measurements, whose domains are subjected to the action of certain self-maps and the space of P-GENEOs between these spaces. We define pseudo-metrics on them and show some properties of the resulting spaces. In particular, we show how such spaces have convenient approximation and convexity properties.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference24 articles.

1. Towards a topological-geometrical theory of group equivariant non-expansive operators for data analysis and machine learning;Bergomi;Nat. Mach. Intellig,2019

2. On the finite representation of linear group equivariant operators via permutant measures;Bocchi;Ann. Mathem. Artif. Intellig,2023

3. GENEOnet: a new machine learning paradigm based on Group Equivariant Non-Expansive Operators. An application to protein pocket detection;Bocchi;arXiv,2022

4. Geometric deep learning: going beyond euclidean data;Bronstein;IEEE Signal Process. Mag,2017

5. Geometric deep learning: grids, groups, graphs, geodesics, and gauges;Bronstein;arXiv,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3