Real-Time Inference With 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-Rate Particle Imaging Detectors

Author:

Jwa Yeon-jae,Di Guglielmo Giuseppe,Arnold Lukas,Carloni Luca,Karagiorgi Georgia

Abstract

We present a custom implementation of a 2D Convolutional Neural Network (CNN) as a viable application for real-time data selection in high-resolution and high-rate particle imaging detectors, making use of hardware acceleration in high-end Field Programmable Gate Arrays (FPGAs). To meet FPGA resource constraints, a two-layer CNN is optimized for accuracy and latency with KerasTuner, and network quantization is further used to minimize the computing resource utilization of the network. We use “High Level Synthesis for Machine Learning” (hls4ml) tools to test CNN deployment on a Xilinx UltraScale+ FPGA, which is an FPGA technology proposed for use in the front-end readout system of the future Deep Underground Neutrino Experiment (DUNE) particle detector. We evaluate network accuracy and estimate latency and hardware resource usage, and comment on the feasibility of applying CNNs for real-time data selection within the currently planned DUNE data acquisition system. This represents the first-ever exploration of employing 2D CNNs on FPGAs for DUNE.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference48 articles.

1. Artificial neural networks on FPGAs for real-time energy reconstruction of the ATLAS LAr calorimeters;Aad,2021

2. Fast convolutional neural networks on FPGAs with hls4ml;Aarrestad,2021

3. Prospects for beyond the standard model physics searches at the deep underground neutrino experiment;Abi;Eur. Phys. J. C

4. Deep underground neutrino experiment (DUNE), far detector technical design report, Volume I Introduction to DUNE;Abi

5. Deep underground neutrino experiment (DUNE), far detector technical design report, Volume II: DUNE Physics;Abi

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Field Programmable Gate Array: An Extensive Review, Recent Trends, Challenges and Applications;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

2. Application of machine learning methods in neutrino experiments;Journal of Physical Studies;2024

3. The Transfer Learning-Based Approach for Electromagnetic Signal Classification Using Simulated HGCAL Data;2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM);2023-09-21

4. MHD mode tracking using high-speed cameras and deep learning;Plasma Physics and Controlled Fusion;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3