Prediction of mental effort derived from an automated vocal biomarker using machine learning in a large-scale remote sample

Author:

Taptiklis Nick,Su Merina,Barnett Jennifer H.,Skirrow Caroline,Kroll Jasmin,Cormack Francesca

Abstract

IntroductionBiomarkers of mental effort may help to identify subtle cognitive impairments in the absence of task performance deficits. Here, we aim to detect mental effort on a verbal task, using automated voice analysis and machine learning.MethodsAudio data from the digit span backwards task were recorded and scored with automated speech recognition using the online platform NeuroVocalixTM, yielding usable data from 2,764 healthy adults (1,022 male, 1,742 female; mean age 31.4 years). Acoustic features were aggregated across each trial and normalized within each subject. Cognitive load was dichotomized for each trial by categorizing trials at >0.6 of each participants' maximum span as “high load.” Data were divided into training (60%), test (20%), and validate (20%) datasets, each containing different participants. Training and test data were used in model building and hyper-parameter tuning. Five classification models (Logistic Regression, Naive Bayes, Support Vector Machine, Random Forest, and Gradient Boosting) were trained to predict cognitive load (“high” vs. “low”) based on acoustic features. Analyses were limited to correct responses. The model was evaluated using the validation dataset, across all span lengths and within the subset of trials with a four-digit span. Classifier discriminant power was examined with Receiver Operating Curve (ROC) analysis.ResultsParticipants reached a mean span of 6.34 out of 8 items (SD = 1.38). The Gradient Boosting classifier provided the best performing model on test data (AUC = 0.98) and showed excellent discriminant power for cognitive load on the validation dataset, across all span lengths (AUC = 0.99), and for four-digit only utterances (AUC = 0.95).DiscussionA sensitive biomarker of mental effort can be derived from vocal acoustic features in remotely administered verbal cognitive tests. The use-case of this biomarker for improving sensitivity of cognitive tests to subtle pathology now needs to be examined.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3