Author:
Lossio-Ventura Juan Antonio,Sun Ran,Boussard Sebastien,Hernandez-Boussard Tina
Abstract
ObjectiveThe adoption of electronic health records (EHRs) has produced enormous amounts of data, creating research opportunities in clinical data sciences. Several concept recognition systems have been developed to facilitate clinical information extraction from these data. While studies exist that compare the performance of many concept recognition systems, they are typically developed internally and may be biased due to different internal implementations, parameters used, and limited number of systems included in the evaluations. The goal of this research is to evaluate the performance of existing systems to retrieve relevant clinical concepts from EHRs.MethodsWe investigated six concept recognition systems, including CLAMP, cTAKES, MetaMap, NCBO Annotator, QuickUMLS, and ScispaCy. Clinical concepts extracted included procedures, disorders, medications, and anatomical location. The system performance was evaluated on two datasets: the 2010 i2b2 and the MIMIC-III. Additionally, we assessed the performance of these systems in five challenging situations, including negation, severity, abbreviation, ambiguity, and misspelling.ResultsFor clinical concept extraction, CLAMP achieved the best performance on exact and inexact matching, with an F-score of 0.70 and 0.94, respectively, on i2b2; and 0.39 and 0.50, respectively, on MIMIC-III. Across the five challenging situations, ScispaCy excelled in extracting abbreviation information (F-score: 0.86) followed by NCBO Annotator (F-score: 0.79). CLAMP outperformed in extracting severity terms (F-score 0.73) followed by NCBO Annotator (F-score: 0.68). CLAMP outperformed other systems in extracting negated concepts (F-score 0.63).ConclusionsSeveral concept recognition systems exist to extract clinical information from unstructured data. This study provides an external evaluation by end-users of six commonly used systems across different extraction tasks. Our findings suggest that CLAMP provides the most comprehensive set of annotations for clinical concept extraction tasks and associated challenges. Comparing standard extraction tasks across systems provides guidance to other clinical researchers when selecting a concept recognition system relevant to their clinical information extraction task.
Funder
National Cancer Institute
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献