Author:
Blum Luca,Elgendi Mohamed,Menon Carlo
Abstract
This paper studied the effects of applying the Box-Cox transformation for classification tasks. Different optimization strategies were evaluated, and the results were promising on four synthetic datasets and two real-world datasets. A consistent improvement in accuracy was demonstrated using a grid exploration with cross-validation. In conclusion, applying the Box-Cox transformation could drastically improve the performance by up to a 12% accuracy increase. Moreover, the Box-Cox parameter choice was dependent on the data and the used classifier.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献