Abstract
The rapid progress of AI impacts various areas of life, including toxicology, and promises a major role for AI in future risk assessments. Toxicology has shifted from a purely empirical science focused on observing chemical exposure outcomes to a data-rich field ripe for AI integration. AI methods are well-suited to handling and integrating large, diverse data volumes - a key challenge in modern toxicology. Additionally, AI enables Predictive Toxicology, as demonstrated by the automated read-across tool RASAR that achieved 87% balanced accuracy across nine OECD tests and 190,000 chemicals, outperforming animal test reproducibility. AI’s ability to handle big data and provide probabilistic outputs facilitates probabilistic risk assessment. Rather than just replicating human skills at larger scales, AI should be viewed as a transformative technology. Despite potential challenges, like model black-boxing and dataset biases, explainable AI (xAI) is emerging to address these issues.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献