Predicting overall survival from tumor dynamics metrics using parametric statistical and machine learning models: application to patients with RET-altered solid tumors

Author:

Velasquez Erick,Kassir Nastya,Cheeti Sravanthi,Kuruvilla Denison,Sane Rucha,Dang Steve,Miles Dale,Lu James

Abstract

In oncology drug development, tumor dynamics modeling is widely applied to predict patients' overall survival (OS) via parametric models. However, the current modeling paradigm, which assumes a disease-specific link between tumor dynamics and survival, has its limitations. This is particularly evident in drug development scenarios where the clinical trial under consideration contains patients with tumor types for which there is little to no prior institutional data. In this work, we propose the use of a pan-indication solid tumor machine learning (ML) approach whereby all three tumor metrics (tumor shrinkage rate, tumor regrowth rate and time to tumor growth) are simultaneously used to predict patients' OS in a tumor type independent manner. We demonstrate the utility of this approach in a clinical trial of cancer patients treated with the tyrosine kinase inhibitor, pralsetinib. We compared the parametric and ML models and the results showed that the proposed ML approach is able to adequately predict patient OS across RET-altered solid tumors, including non-small cell lung cancer, medullary thyroid cancer as well as other solid tumors. While the findings of this study are promising, further research is needed for evaluating the generalizability of the ML model to other solid tumor types.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3