Closed-Form Results for Prior Constraints in Sum-Product Networks

Author:

Papantonis Ioannis,Belle Vaishak

Abstract

Incorporating constraints is a major concern in probabilistic machine learning. A wide variety of problems require predictions to be integrated with reasoning about constraints, from modeling routes on maps to approving loan predictions. In the former, we may require the prediction model to respect the presence of physical paths between the nodes on the map, and in the latter, we may require that the prediction model respect fairness constraints that ensure that outcomes are not subject to bias. Broadly speaking, constraints may be probabilistic, logical or causal, but the overarching challenge is to determine if and how a model can be learnt that handles a declared constraint. To the best of our knowledge, treating this in a general way is largely an open problem. In this paper, we investigate how the learning of sum-product networks, a newly introduced and increasingly popular class of tractable probabilistic models, is possible with declared constraints. We obtain correctness results about the training of these models, by establishing a relationship between probabilistic constraints and the model's parameters.

Funder

Research Councils UK

Publisher

Frontiers Media SA

Reference50 articles.

1. Learning the structure of sum-product networks via an SVD-based algorithm;Adel,2015

2. Solving sat and bayesian inference with backtracking search;Bacchus;J. Artif. Intell. Res,2009

3. Thin junction trees;Bach,2002

4. Learning bayesian networks with ancestral constraints;Chen,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge representation and acquisition for ethical AI: challenges and opportunities;Ethics and Information Technology;2023-03

2. Tractable Probabilistic Models for Ethical AI;Graph-Based Representation and Reasoning;2022

3. Chapter 3. Logic Meets Learning: From Aristotle to Neural Networks;Frontiers in Artificial Intelligence and Applications;2021-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3