Visual Features and Their Own Optical Flow

Author:

Betti Alessandro,Boccignone Giuseppe,Faggi Lapo,Gori Marco,Melacci Stefano

Abstract

Symmetries, invariances and conservation equations have always been an invaluable guide in Science to model natural phenomena through simple yet effective relations. For instance, in computer vision, translation equivariance is typically a built-in property of neural architectures that are used to solve visual tasks; networks with computational layers implementing such a property are known as Convolutional Neural Networks (CNNs). This kind of mathematical symmetry, as well as many others that have been recently studied, are typically generated by some underlying group of transformations (translations in the case of CNNs, rotations, etc.) and are particularly suitable to process highly structured data such as molecules or chemical compounds which are known to possess those specific symmetries. When dealing with video streams, common built-in equivariances are able to handle only a small fraction of the broad spectrum of transformations encoded in the visual stimulus and, therefore, the corresponding neural architectures have to resort to a huge amount of supervision in order to achieve good generalization capabilities. In the paper we formulate a theory on the development of visual features that is based on the idea that movement itself provides trajectories on which to impose consistency. We introduce the principle of Material Point Invariance which states that each visual feature is invariant with respect to the associated optical flow, so that features and corresponding velocities are an indissoluble pair. Then, we discuss the interaction of features and velocities and show that certain motion invariance traits could be regarded as a generalization of the classical concept of affordance. These analyses of feature-velocity interactions and their invariance properties leads to a visual field theory which expresses the dynamical constraints of motion coherence and might lead to discover the joint evolution of the visual features along with the associated optical flows.

Publisher

Frontiers Media SA

Reference48 articles.

1. Active Vision;Aloimonos;Int. J. Comput. Vis.,1988

2. Unsupervised Learning of Invariant Representations;Anselmi;Theor. Comput. Sci.,2016

3. Mathematical Problems in Image Processing

4. Active and Exploratory Perception;Bajcsy;CVGIP: Image Understanding,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3