AlphaZe∗∗: AlphaZero-like baselines for imperfect information games are surprisingly strong

Author:

Blüml Jannis,Czech Johannes,Kersting Kristian

Abstract

In recent years, deep neural networks for strategy games have made significant progress. AlphaZero-like frameworks which combine Monte-Carlo tree search with reinforcement learning have been successfully applied to numerous games with perfect information. However, they have not been developed for domains where uncertainty and unknowns abound, and are therefore often considered unsuitable due to imperfect observations. Here, we challenge this view and argue that they are a viable alternative for games with imperfect information—a domain currently dominated by heuristic approaches or methods explicitly designed for hidden information, such as oracle-based techniques. To this end, we introduce a novel algorithm based solely on reinforcement learning, called AlphaZe∗∗, which is an AlphaZero-based framework for games with imperfect information. We examine its learning convergence on the games Stratego and DarkHex and show that it is a surprisingly strong baseline, while using a model-based approach: it achieves similar win rates against other Stratego bots like Pipeline Policy Space Response Oracle (P2SRO), while not winning in direct comparison against P2SRO or reaching the much stronger numbers of DeepNash. Compared to heuristics and oracle-based approaches, AlphaZe∗∗ can easily deal with rule changes, e.g., when more information than usual is given, and drastically outperforms other approaches in this respect.

Funder

Hessisches Ministerium für Wissenschaft und Kunst

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference41 articles.

1. Dota 2 with large scale deep reinforcement learning;Berner;arXiv:1912.06680v1,2019

2. Combining prediction of human decisions with ISMCTS in imperfect information games;Bitan;arXiv preprint arXiv:1709.09451,2017

3. “A comparison of Monte-Carlo methods for phantom GO,”;Borsboom,2007

4. “Combining deep reinforcement learning and search for imperfect-information games,”;Brown;Advances in Neural Information Processing Systems, Vol. 33,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3