She adapts to her student: An expert pragmatic speaker tailoring her referring expressions to the Layman listener

Author:

Greco Claudio,Bagade Diksha,Le Dieu-Thu,Bernardi Raffaella

Abstract

Communication is a dynamic process through which interlocutors adapt to each other. In the development of conversational agents, this core aspect has been put aside for several years since the main challenge was to obtain conversational neural models able to produce utterances and dialogues that at least at the surface level are human-like. Now that this milestone has been achieved, the importance of paying attention to the dynamic and adaptive interactive aspects of language has been advocated in several position papers. In this paper, we focus on how a Speaker adapts to an interlocutor with different background knowledge. Our models undergo a pre-training phase, through which they acquire grounded knowledge by learning to describe an image, and an adaptive phase through which a Speaker and a Listener play a repeated reference game. Using a similar setting, previous studies focus on how conversational models create new conventions; we are interested, instead, in studying whether the Speaker learns from the Listener's mistakes to adapt to his background knowledge. We evaluate models based on Rational Speech Act (RSA), a likelihood loss, and a combination of the two. We show that RSA could indeed work as a backbone to drive the Speaker toward the Listener: in the combined model, apart from the improved Listener's accuracy, the language generated by the Speaker features the changes that signal adaptation to the Listener's background knowledge. Specifically, captions to unknown object categories contain more adjectives and less direct reference to the unknown objects.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference46 articles.

1. “Reasoning about pragmatics with neural listeners and speakers,”;Andreas;Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,2016

2. “Learning to mediate disparities towards pragmatic communication,”;Bao;Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),2022

3. “MindCraft: theory of mind modeling for situated dialogue in collaborative tasks,”;Bara;Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,2021

4. “Grounding as a collaborative process,”;Benotti;Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3