Direct domain adaptation through reciprocal linear transformations

Author:

Alkhalifah Tariq,Ovcharenko Oleg

Abstract

We propose a direct domain adaptation (DDA) approach to enrich the training of supervised neural networks on synthetic data by features from real-world data. The process involves a series of linear operations on the input features to the NN model, whether they are from the source or target distributions, as follows: (1) A cross-correlation of the input data (i.e., images) with a randomly picked sample pixel (or pixels) of all images from the input or the mean of all randomly picked sample pixel (or pixels) of all input images. (2) The convolution of the resulting data with the mean of the autocorrelated input images from the other domain. In the training stage, as expected, the input images are from the source distribution, and the mean of auto-correlated images are evaluated from the target distribution. In the inference/application stage, the input images are from the target distribution, and the mean of auto-correlated images are evaluated from the source distribution. The proposed method only manipulates the data from the source and target domains and does not explicitly interfere with the training workflow and network architecture. An application that includes training a convolutional neural network on the MNIST dataset and testing the network on the MNIST-M dataset achieves a 70% accuracy on the test data. A principal component analysis (PCA), as well as t-SNE, shows that the input features from the source and target domains, after the proposed direct transformations, share similar properties along the principal components as compared to the original MNIST and MNIST-M input features.

Funder

King Abdullah University of Science and Technology

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference19 articles.

1. Analysis of representations for domain adaptation;Ben-David,2006

2. No routing needed between capsules;Byerly;Neurocomputing,2021

3. A comparison of seismic saltbody interpretation via neural networks at sample and pattern levels;Di;Geophys. Prospect,2020

4. Unsupervised visual domain adaptation using subspace alignment;Fernando,2013

5. Domain-adversarial training of neural networks;Ganin;J. Mach. Learn. Res,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CNN-based data augmentation for handwritten gurumukhi text recognition;Multimedia Tools and Applications;2024-02-06

2. Improved Discrepancy based Domain Adaptation Network using combined loss functions and Feature transformations✱;Proceedings of the Fourteenth Indian Conference on Computer Vision, Graphics and Image Processing;2023-12-15

3. Domain Adaptation: A Survey;Computer Vision and Machine Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3