Deep hybrid model for maternal health risk classification in pregnancy: synergy of ANN and random forest

Author:

Togunwa Taofeeq Oluwatosin,Babatunde Abdulhammed Opeyemi,Abdullah Khalil-ur-Rahman

Abstract

IntroductionMaternal health is a critical aspect of public health that affects the wellbeing of both mothers and infants. Despite medical advancements, maternal mortality rates remain high, particularly in developing countries. AI-based models provide new ways to analyze and interpret medical data, which can ultimately improve maternal and fetal health outcomes.MethodsThis study proposes a deep hybrid model for maternal health risk classification in pregnancy, which utilizes the strengths of artificial neural networks (ANN) and random forest (RF) algorithms. The proposed model combines the two algorithms to improve the accuracy and efficiency of risk classification in pregnant women. The dataset used in this study consists of features such as age, systolic and diastolic blood pressure, blood sugar, body temperature, and heart rate. The dataset is divided into training and testing sets, with 75% of the data used for training and 25% used for testing. The output of the ANN and RF classifier is considered, and a maximum probability voting system selects the output with the highest probability as the most correct.ResultsPerformance is evaluated using various metrics, such as accuracy, precision, recall, and F1 score. Results showed that the proposed model achieves 95% accuracy, 97% precision, 97% recall, and an F1 score of 0.97 on the testing dataset.DiscussionThe deep hybrid model proposed in this study has the potential to improve the accuracy and efficiency of maternal health risk classification in pregnancy, leading to better health outcomes for pregnant women and their babies. Future research could explore the generalizability of this model to other populations, incorporate unstructured medical data, and evaluate its feasibility for clinical use.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Derin Öğrenme ile Anne Sağlığı Risk Analizi Yapılması;Orclever Proceedings of Research and Development;2024-05-31

2. Gebelikte Anne Sağlığı Risk Gruplarının Tahminine Yönelik Makine Öğrenmesi Tabanlı Bir Karar Destek Sistem Tasarımı;Black Sea Journal of Engineering and Science;2024-05-15

3. Classification of Maternal Health Risk Factors Using Machine Learning Approach;2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (SASI-ITE);2024-02-23

4. Maternal Health Risk Prediction with Machine Learning Methods;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

5. Fetal monitoring technologies for the detection of intrapartum hypoxia - challenges and opportunities;Biomedical Physics & Engineering Express;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3