An algorithm for computing Schubert varieties of best fit with applications

Author:

Karimov Karim,Kirby Michael,Peterson Chris

Abstract

We propose the geometric framework of the Schubert variety as a tool for representing a collection of subspaces of a fixed vector space. Specifically, given a collection of l-dimensional subspaces V1, …, Vr of ℝn, represented as the column spaces of matrices X1, …, Xr, we seek to determine a representative matrix K∈ℝn×k such that each subspace Vi intersects (or comes close to intersecting) the span of the columns of K in at least c dimensions. We formulate a non-convex optimization problem to determine such a K along with associated sets of vectors {ai} and {bi} used to express linear combinations of the columns of the Xi that are close to linear combinations of the columns of K. Further, we present a mechanism for integrating this representation into an artificial neural network architecture as a computational unit (which we refer to as an abstract node). The representative matrix K can be learned in situ, or sequentially, as part of a learning problem. Additionally, the matrix K can be employed as a change of coordinates in the learning problem. The set of all l-dimensional subspaces of ℝn that intersects the span of the columns of K in at least c dimensions is an example of a Schubert subvariety of the Grassmannian GR(l, n). When it is not possible to find a Schubert variety passing through a collection of points on GR(l, n), the goal of the non-convex optimization problem is to find the Schubert variety of best fit, i.e., the Schubert variety that comes as close as possible to the points. This may be viewed as an analog of finding a subspace of best fit to data in a vector space. The approach we take is well-suited to the modeling of collections of sets of data either as a stand-alone Schubert variety of best fit (SVBF), or in the processing workflow of a deep neural network. We present applications to some classification problems on sets of data to illustrate the behavior of the method.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference22 articles.

1. The bilipschitz criterion for mapping design in data analysis;Anderle;Intell. Data Anal,2002

2. Principal angles separate subject illumination spaces in YDB and CMU-pie;Beveridge;IEEE Trans. Pattern Anal. Mach. Intell,2008

3. A new approach for dimensionality reduction: theory and algorithms;Broomhead;SIAM J. Appl. Math,2000

4. The Whitney reduction network: a method for computing autoassociative graphs;Broomhead;Neural Comput,2001

5. Supervised dimensionality reduction and visualization using centroid-encoder;Ghosh;J. Mach. Learn. Res,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3