Evaluating and selecting arguments in the context of higher order uncertainty

Author:

Straßer Christian,Michajlova Lisa

Abstract

Human and artificial reasoning has to deal with uncertain environments. Ideally, probabilistic information is available. However, sometimes probabilistic information may not be precise or it is missing entirely. In such cases we reason with higher-order uncertainty. Formal argumentation is one of the leading formal methods to model defeasible reasoning in artificial intelligence, in particular in the tradition of Dung's abstract argumentation. Also from the perspective of cognition, reasoning has been considered as argumentative and social in nature, for instance by Mercier and Sperber. In this paper we use formal argumentation to provide a framework for reasoning with higher-order uncertainty. Our approach builds strongly on Haenni's system of probabilistic argumentation, but enhances it in several ways. First, we integrate it with deductive argumentation, both in terms of the representation of arguments and attacks, and in terms of utilizing abstract argumentation semantics for selecting some out of a set of possibly conflicting arguments. We show how our system can be adjusted to perform well under the so-called rationality postulates of formal argumentation. Second, we provide several notions of argument strength which are studied both meta-theoretically and empirically. In this way the paper contributes a formal model of reasoning with higher-order uncertainty with possible applications in artificial intelligence and human cognition.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference50 articles.

1. “Characterizations and classifications of argumentative entailments,”;Arieli,2021

2. Sequent-based logical argumentation;Arieli;Argument Comput.,2015

3. “On minimality and consistency tolerance in logical argumentation frameworks,”;Arieli,2020

4. Abstract argumentation frameworks and their semantics;Baroni;Handb. Formal Argument.,2018

5. “A critical assessment of Pollock's work on logic-based argumentation with suppositions,”;Beirlaen,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3