Author:
Isaac Joseph H. R.,Manivannan Muniyandi,Ravindran Balaraman
Abstract
Hand pose estimation in 3D from depth images is a highly complex task. Current state-of-the-art 3D hand pose estimators focus only on the accuracy of the model as measured by how closely it matches the ground truth hand pose but overlook the resulting hand pose's anatomical correctness. In this paper, we present the Single Shot Corrective CNN (SSC-CNN) to tackle the problem of enforcing anatomical correctness at the architecture level. In contrast to previous works which use post-facto pose filters, SSC-CNN predicts the hand pose that conforms to the human hand's biomechanical bounds and rules in a single forward pass. The model was trained and tested on the HANDS2017 and MSRA datasets. Experiments show that our proposed model shows comparable accuracy to the state-of-the-art models as measured by the ground truth pose. However, the previous methods have high anatomical errors, whereas our model is free from such errors. Experiments show that our proposed model shows zero anatomical errors along with comparable accuracy to the state-of-the-art models as measured by the ground truth pose. The previous methods have high anatomical errors, whereas our model is free from such errors. Surprisingly even the ground truth provided in the existing datasets suffers from anatomical errors, and therefore Anatomical Error Free (AEF) versions of the datasets, namely AEF-HANDS2017 and AEF-MSRA, were created.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Muscles in Action;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01
2. Muscles in Action;IEEE I CONF COMP VIS;2023