Developing and testing a prediction model for periodontal disease using machine learning and big electronic dental record data

Author:

Patel Jay S.,Su Chang,Tellez Marisol,Albandar Jasim M.,Rao Rishi,Iyer Vishnu,Shi Evan,Wu Huanmei

Abstract

Despite advances in periodontal disease (PD) research and periodontal treatments, 42% of the US population suffer from periodontitis. PD can be prevented if high-risk patients are identified early to provide preventive care. Prediction models can help assess risk for PD before initiation and progression; nevertheless, utilization of existing PD prediction models is seldom because of their suboptimal performance. This study aims to develop and test the PD prediction model using machine learning (ML) and electronic dental record (EDR) data that could provide large sample sizes and up-to-date information. A cohort of 27,138 dental patients and grouped PD diagnoses into: healthy control, mild PD, and severe PD was generated. The ML model (XGBoost) was trained (80% training data) and tested (20% testing data) with a total of 74 features extracted from the EDR. We used a five-fold cross-validation strategy to identify the optimal hyperparameters of the model for this one-vs.-all multi-class classification task. Our prediction model differentiated healthy patients vs. mild PD cases and mild PD vs. severe PD cases with an average area under the curve of 0.72. New associations and features compared to existing models were identified that include patient-level factors such as patient anxiety, chewing problems, speaking trouble, teeth grinding, alcohol consumption, injury to teeth, presence of removable partial dentures, self-image, recreational drugs (Heroin and Marijuana), medications affecting periodontium, and medical conditions such as osteoporosis, cancer, neurological conditions, infectious diseases, endocrine conditions, cardiovascular diseases, and gastroenterology conditions. This pilot study demonstrated promising results in predicting the risk of PD using ML and EDR data. The model may provide new information to the clinicians about the PD risks and the factors responsible for the disease progression to take preventive approaches. Further studies are warned to evaluate the prediction model's performance on the external dataset and determine its usability in clinical settings.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference37 articles.

1. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium;Alonso;J. Am. Heart Assoc.,2013

2. Evaluation of a novel periodontal risk assessment model in patients presenting for dental care;Chandra;Oral Health Prev. Dent.,2007

3. Xgboost: a scalable tree boosting system,;Chen;Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016

4. Evaluation of periodontal risk in adult patients using two different risk assessment models–a pilot study;Dhulipalla;J. Clin. Diagn. Res.,2015

5. Periodontitis in US adults: national health and nutrition examination survey 2009–2014;Eke;J. Am. Dent. Assoc.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3