Learning from 2D: Machine learning of 3D effective properties of heterogeneous materials based on 2D microstructure sections

Author:

Hu Guangyu,Latypov Marat I.

Abstract

Microstructure—property relationships are key to effective design of structural materials for advanced applications. Advances in computational methods enabled modeling microstructure-sensitive properties using 3D models (e.g., finite elements) based on microstructure representative volumes. 3D microstructure data required as input to these models are typically obtained from either 3D characterization experiments or digital reconstruction based on statistics from 2D microstructure images. In this work, we present machine learning (ML) approaches to modeling effective properties of heterogeneous materials directly from 2D microstructure sections. To this end, we consider statistical learning models based on spatial correlations and convolutional neural networks as two distinct ML strategies. In both strategies, models are trained on a dataset of synthetically generated 3D microstructures and their properties obtained from micromechanical 3D simulations. Upon training, the models predict properties from 2D microstructure sections. The advantage of the presented models is that they only need 2D sections, whose experimental acquisition is more accessible compared to 3D characterization. Furthermore, the present models do not require digital reconstruction of 3D microstructures.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3