Decentralized power grid fault traceability system based on internet of things and blockchain technology

Author:

Ji Qingqing,Hu Chunying,Duan Qiao,Huang Chunli,Zhao Xu

Abstract

With the economic and social development of China, the scale of the power grid continues to expand. Rapid location and diagnosis of power failures have become significant for China to maintain its stable development of power system. In recent years, the Internet of Things (IoT) based on 5G technology has been applied to power grid more widely. Meanwhile, given the fact that the blockchain is traceable and tamper-resistant, the combination of the blockchain and IoT is considered to locate power failures quickly and assist professional maintenance personnel to deduce the cause of failures, minimizing economic loss. With the foundation of IoT sensor node data, this paper designs a decentralized electronic certificate scheme based on blockchain and Interplanetary File System (IPFS) to collect data of each node of the power system and store it in the blockchain. The model of data sharding, storage and certificate optimizes the utilization of storage space of the blockchain, reducing the time required for system access to nodes. Traceability of data stored on blockchain data is employed to quickly and accurately trace faults of the power system, providing strong technical support for the safe and stable operation of China’s power system.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference40 articles.

1. Asymmetric impact of coal and gas on carbon dioxide emission in six Asian countries: Using asymmetric and non-linear approach;Ali;J. Clean. Prod.,2022

2. Performance characterization of hyperledger fabric;Baliga,2018

3. Timely determination of static stability margins in power supply systems equipped with distributed generation installations;Bulatov;Mater. Sci.,2021

4. The integration of blockchain technology and smart grid: Framework and application;Du;Math. Problems Eng.,2021

5. Influence of green technology, green energy consumption, energy efficiency, trade, economic development and FDI on climate change in South Asia;Gulzara;Sci. Rep.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3