Optimization and Comparative Economic Analysis of Standalone and Grid-Connected Hybrid Renewable Energy System for Remote Location

Author:

Jain Siddharth,Sawle Yashwant

Abstract

Due to rising population growth and economic development, there is indeed a growing demand for electricity. Both in aspects of generation and transmission, conventional power firms are striving to manage these demands. Moreover, the ubiquitous utilization of electricity and other power generators, which are mainly driven from fossil fuels, seems to have some limitations, like declining performance and restricted energy production. As a result, use of renewable energy sources is incredibly important. Decentralized power generation in remote regions has become the primary requirement of society, based on renewable energy. Particularly in comparison with the electrification of urban areas, rural electrification is quite expensive. Microgrid’s development utilizing hybrid power is a potential solution for the electrification of rural regions where the transmission chain of network’s extension is unfeasible or inefficient. This research aims to structure a power generation model associated with different HRES combinations using a HOMER software application at a location in India. In the findings of this research, it has been observed that NPC, O&M, COEs, and RF of on-grid energy systems are better than off-grid energy systems. In the study, between eight hybrid system combinations, the lowest COE of 0.034 $/kWh is obtained with the PV-WT-MH-GRID-CT system in the on-grid scenario. This analysis shows NPC, COE, O&M, and renewable fraction are sensitive to the variation in all the considered sensitivity parameters1,2,3,4.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3