Automatic Generation Control for Distributed Multi-Region Interconnected Power System with Function Approximation

Author:

Liu Yuchen,Zhang Le,Xi Lei,Sun Qiuye,Zhu Jizhong

Abstract

Solving the energy crisis and environmental pollution requires large-scale access to distributed energy and the popularization of electric vehicles. However, distributed energy sources and loads are characterized by randomness, intermittence and difficulty in accurate prediction, which bring great challenges to the security, stability and economic operation of power system. Therefore, this paper explores an integrated energy system model that contains a large amount of new energy and combined cooling heating and power (CCHP) from the perspective of automatic generation control (AGC). Then, a gradient Q(σ,λ) [GQ (σ,λ)] algorithm for distributed multi-region interconnected power system is proposed to solve it. The proposed algorithm integrates unified mixed sampling parameter and linear function approximation on the basis of the Q(λ) algorithm with characteristics of interactive collaboration and self-learning. The GQ (σ,λ) algorithm avoids the disadvantages of large action spaces required by traditional reinforcement learning, so as to obtain multi-region optimal cooperative control. Under such control, the energy autonomy of each region can be achieved, and the strong stochastic disturbance caused by the large-scale access of distributed energy to grid can be resolved. In this paper, the improved IEEE two-area load frequency control (LFC) model and the integrated energy system model incorporating a large amount of new energy and CCHP are used for simulation analysis. Results show that compared with other algorithms, the proposed algorithm has optimal cooperative control performance, fast convergence speed and good robustness, which can solve the strong stochastic disturbance caused by the large-scale grid connection of distributed energy.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3