AADMM based shared energy storage planning for resilience improvement of renewable energy stations

Author:

Zhao Long,Zhang Jinping,Lv Qingquan,Zhang Zhenzhen,Gao Pengfei,Zhang Ruixiao

Abstract

The exponential proliferation of renewable energy has resulted in a significant mismatch between power supply and demand, especially during extreme events. This incongruity presents challenges in efficiently harnessing renewable energy and enhancing the resilience of the power grid. To address this issue, this paper proposes shared energy storage (SES) planning based on the adaptive alternating direction method of multipliers (AADMM). The objective is to fully leverage SES, enhance the local consumption level of renewable energy, ensure power grid resilience, and reduce operational costs. First, to ensure the effective utilization of SES while minimizing initial investment and construction costs, a planning model for SES is formulated. Secondly, to maximize the benefits for multiple prosumers within the renewable energy and SES station, a profit maximization model for multiple prosumers is established. Lastly, to guarantee the privacy security of SES and multi-prosumers while optimizing computational efficiency, a distributed computing model for SES based on AADMM is developed. The results of the example show that the proposed model can not only reduce the cost of 47.96 CNY, but also increase the power self-sufficiency rate by 21.86%. In addition, compared with the traditional distributed optimization, the number of iterations of AADMM is increased by 47.05%, and the computational efficiency is increased by 54.67%. In addition, market prices have a great impact on energy trading, and the impact of market pricing on the operation of the park is not considered in our current research. In this case, our future research aims to consider how to price reasonably between prosumers and between prosumers and SES, so as to realize the stable participation of each subject in the energy market.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3