Author:
Brahmendra Kumar G. V.,Palanisamy K.,De Tuglie Enrico
Abstract
This paper demonstrates an enhancement of power quality for a photovoltaic (PV) system connected to the grid with a hybrid energy storage system (HESS). The proposed system utilizes a ramp-rate control (RRC) strategy to limit severe fluctuations in the PV power output. Battery storage is integrated to store surplus energy generated by the PV system and is used for continuous power application. A high-power density device, known as a supercapacitor (SC), is employed to mitigate transient fluctuations in the battery. The proposed system facilitates smooth PV power generation, stabilizes the DC bus voltage (VDC), and eliminates source current harmonics induced by non-linear loads. The Shunt Active Power Filter (SAPF) discussed in this paper serves two primary purposes. Firstly, it acts as a reactive power buffer, smoothing out fluctuations and reducing current harmonic distortions. Secondly, it enables active power injection into the grid, utilizing a specific renewable solar PV source. The efficiency of the modeled compensation system is demonstrated by the sinusoidal shape of the current and the compensation of reactive power (RPC). The targeted system showcases the effectiveness of the current setup by exhibiting low total harmonic distortion (THD). The multifunctional features of the proposed system were implemented using the MATLAB/Simulink software, and the results were validated using an OP5700 Hardware-in-the-Loop (HIL) test bench. This integration of distributed power generation capabilities not only enhances the overall power quality but also improves the efficient utilization of renewable energy resources (RESs).
Reference40 articles.
1. Molecular diagnosis and phylogenetic analysis of human papillomavirus type-16 from suspected patients in Pakistan;Abdullah,2016
2. Control and real-time validation for convertible static transmission controller enabled dual active power filters and PV integration;Alfaris;IEEE Trans. Ind. Appl.,2019
3. Analysis of SAPF based on p-q and SRF theory for different supply and load conditions;Barva,2023
4. Shunt active power filter connected to a photovoltaic array for compensating harmonics and reactive power simultaneously;Belaidi,2013
5. Implementation of adaptive fuzzy logic and PI controllers to regulate the DC bus voltage of shunt active power filter;Benchouia;Appl. Soft Comput.,2015