Short-term wind power combination forecasting method based on wind speed correction of numerical weather prediction

Author:

Wang Siyuan,Liu Haiguang,Yu Guangzheng

Abstract

The temporal variation of wind power is primarily influenced by wind speed, exhibiting high levels of randomness and fluctuation. The accuracy of short-term wind power forecasts is greatly affected by the quality of Numerical Weather Prediction (NWP) data. However, the prediction error of NWP is common, and posing challenges to the precision of wind power prediction. To address this issue, the paper proposes a NWP wind speed error correction model based on Residual Network-Gated Recurrent Unit (ResNet-GRU). The model corrects the forecasted wind speeds at different heights to provide reliable data foundation for subsequent predictions. Furthermore, in order to overcome the difficulty of selecting network parameters for the combined prediction model, we integrate the Kepler Optimization Algorithm (KOA) intelligent algorithm to achieve optimal parameter selection for the model. We propose a Convolutional Neural Network-Long and Short-Term Memory Network (CNN-LSTM) based on Attention Mechanism for short-term wind power prediction. Finally, the proposed methods are validated using data from a wind farm in northwest China, demonstrating their effectiveness in improving prediction accuracy and their practical value in engineering applications.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3