Impact of demand side management on the operational cost of microgrids using ABC algorithm

Author:

Ullah Kalim,Quanyuan Jiang,Geng Guangchao,Khan Rehan Ali,Khan Wahab

Abstract

Self-sustaining microgrids (MG) are now possible due to the integration of renewable energy and communication technology in utility. It is essential to have an effective energy management system (EMS) because of the unpredictable response of these resources, the uncertainty of the load variations, and the market pricing. Only operational expenses have been considered while discussing MG’s optimum operation so far. It is necessary to examine the potential of adding demand-side management (DSM) to the energy management system challenges and its impact on overall operational costs and peak reduction. This article investigates the influence of the load shaping approach that is imposed by the utility on non-dispatchable energy sources. A stochastic EMS framework is developed to come up with an optimum solution for day-ahead scheduling and minimize operating costs for grid-connected MG. Using real-time weather data, four different solar and wind power production profiles are developed in the first step to address the issue of unpredictability. MG system design, operational restrictions, and allocating demand side management load participation data to the goal function are all addressed in this second step of the algorithm development. Artificial Bee Colony (ABC) is designed in the third stage to find the ideal setup of DG units for maximum electricity dispatch and comparing outcomes for all scenarios with and without DSM involvement. It has been shown that with a 20% DSM load participation, a proposed stochastic framework may save costs by 62%, according to the simulation results.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference48 articles.

1. Bid-scheduling of demand side reserve based on demand response considering carbon emission trading in smart grid;Ai;2010 5th Int. Conf. Crit. Infrastruct. Cris 2010-Proc.,2010

2. American Clean Power Association (ACP) Renewable energy and infrastructure policy scenario analysis,2020

3. Optimum microgrid design for enhancing reliability and supply-security;Arefifar;IEEE Trans. Smart Grid,2013

4. Energy management in multi-microgrid systems — Development and assessment;Arefifar,2018

5. State of the art of thermal storage for demand-side management;Arteconi;Appl. Energy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3