Pyrolytic Behavior of Long-Chain Alkyl Quaternary Ammonium Bromide Inside Nanopores

Author:

Niu Yanhui,Yu Wenbin,Yang Shuguang,Wan Quan

Abstract

The pyrolytic behavior of organic matter inside nanopores was studied by simultaneous thermogravimetric/differential scanning calorimetry analyzer coupled with Fourier transform infrared spectroscopy (STA/TG-FTIR). Nanoporous silica was prepared by a hydrothermal method using long-chain alkyl quaternary ammonium bromide (CnTAB, n = 12, 14) as a template. The pyrolytic behavior of CnTAB inside nanopores with different diameters was investigated and compared with that of CnTAB inside and outside nanopores. The results showed that the pyrolytic removal process consisted of the following features: 1) CnTAB underwent carbon chain decomposition and oxidation; 2) the DSC exothermal peak of CnTAB came mainly from its oxidative combustion, and the oxidative combustion temperature decreased with increasing pore size; 3) the CnTAB inside nanopores underwent crystallization–amorphous state phase transition, and CnTAB got trapped inside the calcined nanopores. In addition, the pyrolytic behavior of CnTAB inside the calcined nanopores was found to be similar to that of the uncalcined nanopores. This study aims to understand the storage and transformation processes of organic hydrocarbons under nanopore-confinement effect.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3