Route Stability in the Uncertain Capacitated Arc Routing Problem

Author:

Liu Yuxin,Wang Jiaxin,Zhao Jingjie,Li Xianghua

Abstract

Power line inspections in a microgrid can be modeled as the uncertain capacitated arc routing problem, which is a classic combinatorial optimization problem. As an evolutionary computation method, genetic programming is used as a hyper-heuristic method to automatically evolve routing policies that can make real-time decisions in an uncertain environment. Most existing research on genetic programming hyper-heuristic for the uncertain capacitated arc routing problem only focuses on optimizing the total cost of solutions. As a result, the actual routes directed by the routing policies evolved by genetic programming hyper-heuristic are usually not stable, i.e., the routes have large fluctuations in different uncertain environments. However, for marketing or considering the drivers’ and customers’ perspectives, the routes should not be changed too often or too much. Addressing this problem, this study first proposes a method to estimate the similarity between two routes and then extends it for evaluating the stability of the routes in uncertain environments. A novel genetic programming hyper-heuristic, which considers two objectives, i.e., the solution quality (total cost) and the stability of routes, was designed. Experimental studies demonstrate that the proposed genetic programming is hyper-heuristic with stability in consideration and can obtain more stable solutions than the traditional algorithm, without deteriorating the total cost. The approach provided in this study can be easily extended to solving other combinatorial optimization problems in the microgrid.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3