Process systems engineering perspectives on eco-efficient downstream processing of volatile biochemicals from fermentation

Author:

Janković Tamara,Straathof Adrie J. J.,Kiss Anton A.

Abstract

Increasing concerns over environmental pollution, climate change and energy security are driving a necessary transition from fossil carbon sources to more sustainable alternatives. Due to lower environmental impact, biochemicals are rapidly gaining significance as a potential renewable solution, particularly of interest in Europe. In this context, process systems engineering (PSE) helps with the decision-making at multiple scales and levels, aiming for optimum use of (renewable) resources. Fermentation using waste biomass or industrial off-gases is a promising way for the production of these products. However, due to the inhibitory effects or low substrate concentrations, relatively low product concentrations can be obtained. Consequently, significant improvements in downstream processing are needed to increase the competitiveness of the overall bioprocesses. This paper supports sustainable development by providing new PSE perspectives on the purification of volatile bioproducts from dilute fermentation broths. Since purification significantly contributes to the total cost of biochemical production processes (20%–40% of the total cost), enhancing this part may substantially improve the competitiveness of the overall bioprocesses. The highly advanced downstream process offers the possibility of recovering high-purity products while enhancing the fermentation step by continuously removing inhibitory products, and recycling microorganisms with most of the present water. Besides higher productivity, the upstream process can be greatly improved by avoiding loss of biomass, enabling closed-loop operation and decreasing the need for fresh water. Applying heat pumping, heat integration and other methods of process intensification (PI) can drastically reduce energy requirements and CO2 emissions. Additionally, the opportunity to use renewable electricity instead of conventional fossil energy presents a significant step toward (green) electrification and decarbonization of the chemical industry.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference43 articles.

1. Underutilized lignocellulosic waste as sources of feedstock for biofuel production in developing countries;Adewuyi;Front. Energy Res.,2022

2. Adoption of the Paris agreement2015

3. Comparison of the main ethanol dehydration technologies through process simulation;Bastidas,2010

4. A strategy for controlling acetaldehyde content in an industrial plant of bioethanol;Batista;IFAC Proc. Vol.,2009

5. Downstream of the bioreactor: advancements in recovering fuels and commodity chemicals;Cuellar;Curr. Opin. Biotechnol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3