Configuration-dispatch dual-layer optimization of multi-microgrid–integrated energy systems considering energy storage and demand response

Author:

Wang Kaiyan,Liang Yan,Jia Rong,Wang Xueyan,Du Haodong,Ma Xiping

Abstract

With the urgent demand for energy revolution and consumption under China’s “30–60” dual carbon target, a configuration-scheduling dual-layer optimization model considering energy storage and demand response for the multi-microgrid–integrated energy system is proposed to improve new energy consumption and reduce carbon emissions. First, a demand response model of different users and loads in the integrated energy system is established. Second, the upper energy storage configuration model is constructed by introducing shared energy storage in the multi-microgrid–integrated energy system to improve the system’s flexibility, with the optimization goal of the maximum annual profitability of shared energy storage. A carbon trading mechanism considering the dynamic reward coefficient is designed. A low-carbon economic dispatch model of a multi-microgrid–integrated energy system is constructed based on the upper energy storage capacity, charge and discharge power, and user-side demand response with the lowest annual operating cost as the optimization goal. Finally, the effectiveness of the proposed model is verified by case studies in various scenarios. The results illustrate that the proposed model can fully use demand-side controllable resources to improve system energy utilization, effectively reduce carbon emissions, and further improve the operation economy of the multi-microgrid–integrated energy system.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3