Author:
Feng Hailong,Wang Zhifu,Zhang Fujun
Abstract
Accurate state of charge (SoC) estimation is crucial for the safe and reliable running of lithium-ion batteries in electrified transportation equipment. To enhance the estimation accuracy and robustness under different ambient temperatures, H∞ and the adaptive H∞ filterings were first combined to simultaneously forecast the parameters and SoC of the battery model considering the hysteresis effect in this paper. To drop the computational complexity to the most extent, the hysteresis unit was integrated into the first-order RC battery model and the aforementioned combined algorithm was developed under a dual-time frame. Then, the battery model with the hysteresis effect is evaluated against the model without that in terms of the estimation accuracy. Subsequently, the proposed algorithm is compared with the dual H∞ algorithm based on the employed battery model. The results demonstrate the excellent performance of the utilized battery model and the proposed algorithm in terms of both the estimation accuracy and the convergence speed.
Funder
National Natural Science Foundation of China-Nuclear Technology Innovation Joint Fund
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献