Optimal real-time tuning of autonomous distributed power systems using modern techniques

Author:

Chatterjee Shamik,Mohammed Ahmed Nura,Mishra Sachin,Sharma Naveen Kumar,Selim Ali,Bajaj Mohit,Rihan Mahmoud,Kamel Salah

Abstract

This work considers using a novel heuristic population-based evolutionary algorithm [viz., the moth flame optimization (MFO) algorithm] to regulate the conventional controller installed in an autonomous power system (APS). The moth flame optimization algorithm intends to produce the optimal magnitudes of the proportional-integral-derivative plus second derivative (PIDD2) controller parameters along with its first- and second-order low-pass filter constraints (installed in the investigated autonomous power system). The present task includes a comparison of the voltage response profiles of the investigated system obtained by the proposed moth flame optimization-based proportional-integral-derivative plus second derivative controller and those obtained by other algorithms (conveyed in current state-of-the-art literature) based on a proportional-integral controller. A fast-acting Sugeno fuzzy logic (SFL) technique is used to achieve the dynamic online results of the investigated autonomous power system model for online, off-nominal operational circumstances. Under step perturbations, the time-domain transient investigation in reference to voltage and/or mandate of load for the proposed autonomous power system model is inspected. Additionally, the robustness of the proposed moth flame optimization-based proportional-integral-derivative plus second derivative controller is investigated to test its behavior. An investigation has been provided by varying the model components of the studied autonomous power system model. It may be reported, as per the results obtained from the simulation, that the proposed moth flame optimization-based proportional-integral-derivative plus second derivative controller is an effective control strategy for the autonomous power system. The current research effort indicates that the proposed moth flame optimization algorithm, along with Sugeno fuzzy logic, may be useful for the actual time process of an autonomous power system.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference43 articles.

1. A particle swarm optimization, fuzzy PID controller with generator automatic voltage regulator;Al Gizi;Soft Comput.,2019

2. Electrical power and energy systems integrated PLC-fuzzy PID simulink implemented AVR system;Al Gizi;Int. J. Electr. Power Energy Syst.,2015

3. Sugeno fuzzy PID tuning, by genetic-neutral for AVR in electrical power generation;Al Gizi;Appl. Soft Comput. J.,2015

4. Feedback error learning controller based on RMSprop and salp swarm algorithm for automatic voltage regulator system;Ali,2020

5. Optimal design of automatic voltage regulation controller using hybrid simulated annealing – manta ray foraging optimization algorithm;Ali;Ain Shams Eng. J.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3