Critical evaluation of biochar effects on methane production and process stability in anaerobic digestion

Author:

Hu Jiahui,Stenchly Kathrin,Gwenzi Willis,Wachendorf Michael,Kaetzl Korbinian

Abstract

Biochar is an emerging biomaterial for managing residual biomass while simultaneously sequestering carbon. To extend the biochar value chain, applying biochar to enhance anaerobic digestion (AD) processes is gaining attention in the context of a circular economy and cascading use of biomass. However, the comparative effects of various biochar dosages under normal and severe AD conditions are still unclear. To further our understanding of its potential application, this work investigated the impact of adding various biochar dosages on AD processes under normal and high substrate loadings. Three inoculum-to-substrate ratios (ISRs): one representing normal substrate loading (ISR 2) and two representing substrate overloading (ISR 1 and 0.5) were investigated. Each substrate loading rate was tested with a biochar dosage of 0% (control), 10%, and 25% based on substrate volatile solids. The results revealed that under the severe condition of high substrate overload (ISR 0.5), a high biochar dosage of 25% significantly increased cumulative methane production by 5.6% (p = 0.06) when compared to the control. Under the same condition (ISR 0.5, 25%), the time required to achieve a particular extent of ultimate methane potential was significantly reduced (p = 0.04), indicating that the methane production rate was increased. At ISR 0.5, the increase of process stability was also significant with 25% biochar addition, while the control (0%) and 10% biochar addition exhibited high variance among replicates. However, biochar did not affect AD processes under normal substrate loading (ISR 2) and mild substrate overload (ISR 1). Thus, a positive effect of biochar on the AD process was only observed under severe conditions with the highest biochar dosage. Future works should consider optimising substrate loadings and biochar dosages under real conditions when testing the practical application of biochar addition in AD processes.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3