A mathematical approach to survey electrochemical impedance spectroscopy for aging in lithium-ion batteries

Author:

Chen Bor-Rong,Police Yugandhar R.,Li Meng,Chinnam Paramesh R.,Tanim Tanvir R.,Dufek Eric J.

Abstract

Electrochemical impedance spectroscopy (EIS) is a valuable technique to detect the health status and aging phenomena in lithium-ion batteries (LiB). Equivalent circuit modeling (ECM) is conventionally used when interpreting EIS data and gaining physical insights into the aging mechanisms. However, performing ECM is resource intensive and expert-level of knowledge is usually required to select suitable models and fitting parameters. This article presents a quick and user-friendly data analysis algorithm as an alternative to ECM by mathematically fitting geometric features in Nyquist plots and obtaining the growth trends of the features. The evolving trends in the Nyquist plots, such as chord lengths of the arcs and interception points, are consistent with the growth of resistance components obtained using ECM with R2 values from 0.67 to 0.99, and therefore can be used as indicators of battery aging. Our results show that the quick-fitting approach is suitable for analyzing a series of EIS data acquired during battery cycling and identifying the underlying aging mechanisms.

Funder

Vehicle Technologies Office

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3