Research on the multi-timescale optimal voltage control method for distribution network based on a DQN-DDPG algorithm

Author:

Ma Ming,Du Wanlin,Wang Ling,Ding Cangbi,Liu Siqi

Abstract

A large number of distributed generators (GDs) such as photovoltaic panels (PVs) and energy storage (ES) systems are connected to distribution networks (DNs), and these high permeability GDs can cause voltage over-limit problems. Utilizing new developments in deep reinforcement learning, this paper proposes a multi-timescale control method for maintaining optimal voltage of a DN based on a DQN-DDPG algorithm. Here, we first analyzed the output characteristics of the devices with voltage regulation function in the DN and then used the deep Q network (DQN) algorithm to optimize the voltage regulation over longer times and the deep deterministic policy gradient (DDPG) algorithm to optimize the voltage regulation mode over short time periods. Second, the design strategy of the DQN-DDPG algorithm as based on the Markov decision process transformation was presented for the stated objectives and constraints considering the state of ES charge for prolonging the energy storage capacity. Lastly, the proposed strategy was verified on a simulation platform, and the results obtained were compared to those from a particle swarm optimization algorithm, demonstrating the method’s effectiveness.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3