Short-term power load forecasting for integrated energy system based on a residual and attentive LSTM-TCN hybrid network

Author:

Li Hongyi,Li Shenhao,Wu Yuxin,Xiao Yue,Pan Zhichong,Liu Min

Abstract

In the context of Integrated Energy System (IES), accurate short-term power demand forecasting is crucial for ensuring system reliability, optimizing operational efficiency through resource allocation, and supporting effective real-time decision-making in energy management. However, achieving high forecasting accuracy faces significant challenges due to the inherent complexity and stochastic nature of IES’s short-term load profiles, resulting from diverse consumption patterns among end-users and the intricate coupling within the network of interconnected energy sources. To address this issue, a dedicated Short-Term Power Load Forecasting (STPLF) framework for IES is proposed, which relies on a newly developed hybrid deep learning architecture. The framework seamlessly combines Long Short-Term Memory (LSTM) with Temporal Convolutional Network (TCN), enhanced by an attention mechanism module. By merging these methodologies, the network leverages the parallel processing prowess of TCN alongside LSTM’s ability to retain long-range temporal information, thus enabling it to dynamically concentrate on relevant sections of time series data. This synergy leads to improved prediction accuracy and broader applicability. Furthermore, the integration of residual connections within the network structure serves to deepen its learning capabilities and enhance overall performance. Ultimately, results from a real case study of a user-level IES demonstrate that the Mean Absolute Percentage Error (MAPE) of the proposed framework on the test set is 2.35%. This error rate is lower than the averages of traditional methods (3.43%) and uncombined single submodules (2.80%).

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3