A deep learning-based framework for the operation prediction of primary heat transfer loop in nuclear power plants

Author:

Shi Tianzi,She Jingke,Li Pingfan,Jiang Jianjian,Chen Wei

Abstract

A deep learning-based multi-node framework is constructed in this work to provide a data-driven platform that provides predictions for the operation condition of the primary heat transfer (PHT) loop in nuclear power plants (NPPs). Several deep learning models that have been verified and demonstrated in previous researches, such as Long-Short Term Memory (LSTM), Convolutional Neural Network (CNN), and zigmoid-based LSTM (zLSTM), are applied to modeling critical system parameters at three important nodes in the PHT loop. The feature extraction and process memory are enhanced via the collaborative work of CNN and LSTM. zLSTM, on the other hand, is successfully utilized to strengthen the long-term memory, especially for predictions of a node with multivariate inputs such as the steam generator. The node prediction results are also adopted for a polynomial fitting that generates an additional input to the next node, allowing each node to select a more accurate input. According to the verification experiments based on Loss of Coolant Accident (LOCA), the Mean Squared Error (MSE) result (1.29 × 10−3) and the Mean Absolute Error (MAE) result (1.37 × 10−2) of 0.7 cm2 LOCA case demonstrate the functionality and accuracy of the proposed framework. It is found that the fitting error (MSE) in the outlet node at 0.7 cm2 case is 38.5% lower than the prediction, showing the advantage of applying both deep learning and fitting methods. The best performance, in term of MSE, is obtained at SG node in the 0.7 cm2 case, where its processing error (0.001285) is 93.2% lower than that of the baseline models. Both the validation and verification experiments successfully proved the feasibility and advantages of the proposed framework, which offers an alternative option for the operation analysis of PHT performance.

Funder

Ministry of Science and Technology of the People’s Republic of China

Natural Science Foundation of Hunan Province

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3