Low-Cost Single Chamber MFC Integrated With Novel Lignin-Based Carbon Fiber Felt Bioanode for Treatment of Recalcitrant Azo Dye

Author:

Fatima Masoom,Kiros Yohannes,Farooq Robina,Lindström Rakel W.

Abstract

A flow through anaerobic microbial fuel cell (MFC) was designed and optimized for efficient treatment of recalcitrant textile wastewater. The membrane-less MFC was first time fabricated with a unique combination of electrodes, a novel bioanode of synthesized lignin-based electrospun carbon fiber supporting a biofilm of Geobacter sulfurreducens for acetate oxidation and an air-breathing cathode, consisting of a pyrolyzed macrocycle catalyst mixture on carbon bonded by polytetrafluoroethylene (PTFE). The effects of different organic loadings of acetate along with Acid Orange (AO5), operation time and ionic strength of auxiliary salts (conductivity enhancers) were investigated and responses in terms of polarization and degradation were studied. In addition, the decomposition of the organic species and the degradation of AO5 along with its metabolites and degraded products (2-aminobenzenesulfonic acid) were determined by chemical oxygen demand (COD) analysis, UV-Vis spectrophotometry and high-performance liquid chromatography (UV-HPLC) techniques. SEM and TEM images were also used to find out the biocompatibility of the microbes on lignin-based electrospun carbon felt anode and the morphology of the cathode. Reduction and breakage of the azo bond of AO5 occurs presumably as a side reaction, resulting in the formation of 2-aminobenzenesulfonic acid and unidentified aromatic amines. Maximum current density of anode 0.59 Am−2 and power density of 0.12 Wm−2 were obtained under optimized conditions. As a result, decolouration of AO5 and chemical oxygen demand (COD) removal efficiency was 81 and 58%, respectively. These results revealed that the low-cost MFC assembly can offer significant potential for anaerobic decolouration of recalcitrant textile wastewater.

Funder

Vetenskapsrådet

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference44 articles.

1. Submerged Low-Cost Pyrophyllite Ceramic Membrane Filtration Combined with GAC as Fluidized Particles for Industrial Wastewater Treatment;Ahmad;Chemosphere,2018

2. High Glass Transition Lignins and Lignin Derivatives for the Manufacture of Carbon and Graphite Fibers;Baker;US Patent No,2014

3. Explore Various Co-substrates for Simultaneous Electricity Generation and Congo Red Degradation in Air-Cathode Single-Chamber Microbial Fuel Cell;Cao;Bioelectrochemistry,2010

4. The Effect of Salts Used in Textile Dyeing on Microbial Decolourisation of a Reactive Azo Dye;Carliell;Environ. Technol.,1998

5. Effect of Inorganic Salt in the Culture on Microbial Fuel Cells Performance;Du;Int. J. Electrochem. Sci.,2015

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3