Using MLP to locate transformer winding fault based on digital twin

Author:

Liu Jiangnan,Yao Chenguo,Yu Liang,Dong Shoulong,Liu Yu

Abstract

There is no doubt that transformer plays a fundamental role in power system. At the same time, transformer winding fault diagnosis is an important topic. Many works put the most emphasis on the identification of fault type and degree, while ignoring the fault location. However, fault location is an urgent problem to be solved, which is worth studying and discussing. The contribution of this paper lies in the location of Disk space variation (DSV) fault. The introduction of digital twin can solve the problem of insufficient fault cases, and pave the way for the intellectualization of fault diagnosis. In this paper, the digital twin of transformer winding is established based on double ladder network, in which the distributed parameters are calculated by finite element method. Frequency response analysis (FRA) is one of the most widely accepted methods for transformer winding mechanical deformation fault diagnosis. Aiming at the interpretation code of FRA, this paper disproves the view that phase information is useful. Then, by extracting the mathematical index of FRA, multi-layer perceptron (MLP) is trained and DSV fault location is realized. In addition, the popular support vector machine is also compared with the MLP model in this paper, which further highlights the advantages of MLP. The proposed method is verified by an actual transformer, and the results are satisfactory.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3